41 resultados para Genes, Mating Type, Fungal

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphology has often been used as an indicator of variability within species. The present study investigated morphological and physiological characteristics of isolates of Phytophthora cinnamomi collected from diseased vegetation communities at Anglesea, Victoria, and isolates collected from other regions in the State. Characteristics studied included growth rate on potato-dextrose agar (PDA), corn-meal agar and V8-juice agar at 24°C, growth rate on V8 agar at 15°C, colony morphology on PDA, sporangial and gametangial morphology, sporangial production and mating type. Phenotypic variation was demonstrated in radial growth rate, colony morphology and sporangial dimensions. Sporangial and oogonial dimensions and sporangial production were not significantly different between isolates from different geographical regions. All isolates were found to be of the A2 mating type suggesting variation was derived asexually. Paragynal associations, in an organism characteristically defined as amphigynal, were observed following crossing with A1 isolates. This is the first such study undertaken in southern Victoria. The findings highlight the importance of appropriate management of an area of such high conservation value as the Anglesea Heath to contain the current infection and to prevent introduction of new isolates into the area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diseases in natural ecosystems are often assumed to be less severe than those observed in domestic cropping systems due to the extensive biodiversity exhibited in wild vegetation communities. In Australia, it is this natural biodiversity that is now under threat from Phytophthora cinnamomi. The soilborne Oomycete causes severe decline of native vegetation communities in south-western Victoria, Australia, disrupting the ecological balance of native forest and heathland communities. While the effect of disease caused by P. cinnamomi on native vegetation communities in Victoria has been extensively investigated, little work has focused on the Anglesea healthlands in south-western Victoria. Nothing is known about the population structure of P. cinnamomi at Anglesea. This project was divided into two main components to investigate fundamental issues affecting the management of P. cinnamomi in the Anglesea heathlands. The first component examined the phenotypic characteristics of P. cinnamomi isolates sampled from the population at Anglesea, and compared these with isolates from other regions in Victoria, and also from Western Australia. The second component of the project investigated the effect of the fungicide phosphonate on the host response following infection by P. cinnamomi. Following soil sampling in the Anglesea heathlands, a collection of P, cinnamomi isolates was established. Morphological and physiological traits of each isolate were examined. All isolates were found to be of the A2 mating type. Variation was demonstrated among isolates in the following characteristics: radial growth rate on various nutrient media, sporangial production, and sporangial dimensions. Oogonial dimensions did not differ significantly between isolates. Morphological and physiological variation was rarely dependant on isolate origin. To examine the genetic diversity among isolates and to determine whether phenotypic variation observed was genetically based, Random Amplified Polymorphic DNA (RAPD) analyses were conducted. No significant variation was observed among isolates based on an analysis of molecular variance (AMQVA). The results are discussed in relation to population biology, and the effect of genetic variation on population structure and population dynamics. X australis, an arborescent monocotyledon indigenous to Australia, is highly susceptible to infection by P. cinnamomi. It forms an important component of the heathland vegetation community, providing habitat for native flora and fauna, A cell suspension culture system was developed to investigate the effect of the fungicide phosphonate on the host-pathogen interaction between X. australis and P. cinnamomi. This allowed the interaction between the host and the pathogen to be examined at a cellular level. Subsequently, histological studies using X. australis seedlings were undertaken to support the cellular study. Observations in the cell culture system correlated well with those in the plant. The anatomical structure of X australis roots was examined to assist in the interpretation of results of histopathological studies. The infection of single cells and roots of X. australis, and the effect of phosphonate on the interaction are described. Phosphonate application prior to inoculation with P. cinnamomi reduced the infection of cells in culture and of cells in planta. In particular, phosphonate was found to stimulate the production of phenolic material in roots of X australis seedlings and in cells in suspension cultures. In phosphonate-treated roots of X australis seedlings, the deposition of electron dense material, possibly lignin or cellulose, was observed following infection with P. cinnamomi. It is proposed that this is a significant consequence of the stimulation of plant defence pathways by the fungicide. Results of the study are discussed in terms of the implications of the findings on management of the Anglesea heathlands in Victoria, taking into account variation in pathogen morphology, pathogenicity and genotype. The mode of action of phosphonate in the plant is discussed in relation to plant physiology and biochemistry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: Our objective was to delineate the potential role of adipogenesis in insulin resistance and type 2 diabetes. Obesity is characterized by an increase in adipose tissue mass resulting from enlargement of existing fat cells (hypertrophy) and/or from increased number of adipocytes (hyperplasia). The inability of the adipose tissue to recruit new fat cells may cause ectopic fat deposition and insulin resistance.

Research Methods and Procedures: We examined the expression of candidate genes involved in adipocyte proliferation and/or differentiation [ CCAAT/enhancer-binding protein (C/EBP) alpha, C/EBPdelta, GATA domain-binding protein 3 (GATA3), C/EBPbeta, peroxisome proliferator-activated receptor (PPAR) gamma2, signal transducer and activator of transcription 5A (STAT5A), Wnt-10b, tumor necrosis factor alpha, sterol regulatory element-binding protein 1c (SREBP1c), 11 beta-hydroxysteroid dehydrogenase, PPARG angiopoietin-related protein (PGAR), insulin-like growth factor 1, PPARitalic gamma coactivator 1alpha, PPARitalic gamma coactivator 1beta, and PPARdelta] in subcutaneous adipose tissue from 42 obese individuals with type 2 diabetes and 25 non-diabetic subjects matched for age and obesity.

Results: Insulin sensitivity was measured by a 3-hour 80 mU/m2 per minute hyperinsulinemic glucose clamp (100 mg/dL). As expected, subjects with type 2 diabetes had lower glucose disposal (4.9 plusminus 1.9 vs. 7.5 plusminus 2.8 mg/min per kilogram fat-free mass; p < 0.001) and larger fat cells (0.90 plusminus 0.26 vs. 0.78 plusminus 0.17 mum; p = 0.04) as compared with obese control subjects. Three genes (SREBP1c, p < 0.01; STAT5A, p = 0.02; and PPARitalic gamma2, p = 0.02) had significantly lower expression in obese type 2 diabetics, whereas C/EBPbeta only tended to be lower (p = 0.07).

Discussion: This cross-sectional study supports the hypothesis that impaired expression of adipogenic genes may result in impaired adipogenesis, potentially leading to larger fat cells in subcutaneous adipose tissue and insulin resistance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present invention relates to nucleic acid molecules which encode expression products associated with the modulation of obesity, anorexia, weight maintenance, diabetes and/or metabolic energy levels. The nucleic acid molecules and expression products of the present invention are produced by recombinant means or isolated from natural resources. The subject nucleic acid molecules and expression products and their derivatives, homologs, analogs and mimetics are proposed to be useful as therapeutic and diagnostic agents for obesity, anorexia, weight maintenance, diabetes and/or energy imbalance or as targets for the design and/or identification of modulators of their activity and/or function. The subject nucleic acid molecules and expression products are identified using differential display techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Type II diabetes is characterised by hyperglycemia and disturbances of fat, carbohydrate and protein metabolism. It occurs mainly in adults, with obesity being the most modifiable risk factor. This project utilised the Israeli Sand Rat (Psammomys obesus) and some of the latest molecular biology technology including differential display, membrane microarray and real-time PCR to detect genes in the liver that may be associated with the development of Type II diabetes and/or obesity. This study showed calpain, a proteolytic inhibitor and calpastatin, its natural inhibitor to be disregulated in the liver during the diabetic state.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background
Automated candidate gene prediction systems allow geneticists to hone in on disease genes more rapidly by identifying the most probable candidate genes linked to the disease phenotypes under investigation. Here we assessed the ability of eight different candidate gene prediction systems to predict disease genes in intervals previously associated with type 2 diabetes by benchmarking their performance against genes implicated by recent genome-wide association studies.

Results

Using a search space of 9556 genes, all but one of the systems pruned the genome in favour of genes associated with moderate to highly significant SNPs. Of the 11 genes associated with highly significant SNPs identified by the genome-wide association studies, eight were flagged as likely candidates by at least one of the prediction systems. A list of candidates produced by a previous consensus approach did not match any of the genes implicated by 706 moderate to highly significant SNPs flagged by the genome-wide association studies. We prioritized genes associated with medium significance SNPs.

Conclusion
The study appraises the relative success of several candidate gene prediction systems against independent genetic data. Even when confronted with challengingly large intervals, the candidate gene prediction systems can successfully select likely disease genes. Furthermore, they can be used to filter statistically less-well-supported genetic data to select more likely candidates. We suggest consensus approaches fail because they penalize novel predictions made from independent underlying databases. To realize their full potential further work needs to be done on prioritization and annotation of genes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Individuals in socially monogamous species may participate in copulations outside of the pair bond, resulting in extra-pair offspring. Although males benefit from such extra-pair behavior if they produce more offspring, the adaptive function of infidelity to females remains elusive. Here we show that female participation in extra-pair copulations, combined with a genetically loaded process of sperm competition, enables female finches to target genes that are optimally compatible with their own to ensure fertility and optimize offspring viability. Such female behavior, along with the postcopulatory processes demonstrated here, may provide an adaptive function of female infidelity in socially monogamous animals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The role of a new type of interferon, known as interferon lambda, involved in anti-viral immunity was investigated. The identification of this interferon and its receptor, and their associated stimulation of the antiviral genes, Viperin and ZAP, has important implications for preventing viral infections, such as avian influenza.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Children of obese mothers have increased risk of metabolic syndrome as adults. Here we report the effects of a high-fat diet in the absence of maternal obesity at conception on skeletal muscle metabolic and transcriptional profiles of adult male offspring. Female Sprague Dawley rats were fed a diet rich in saturated fat and sucrose [high-fat diet (HFD): 23.5% total fat, 9.83% saturated fat, 20% sucrose wt:wt] or a normal control diet [(CD) 7% total fat, 0.5% saturated fat, 10% sucrose wt:wt] for the 3 wk prior to mating and throughout pregnancy and lactation. Maternal weights were not different at conception; however, HFD-fed dams were 22% heavier than controls during pregnancy. On a normal diet, the male offspring of HFD-fed dams were not heavier than controls but demonstrated features of insulin resistance, including elevated plasma insulin concentration [40.1 ± 2.5 (CD) vs 56.2 ± 6.1 (HFD) mU/L; P = 0.023]. Next-generation mRNA sequencing was used to identify differentially expressed genes in the offspring soleus muscle, and gene set enrichment analysis (GSEA) was used to detect coordinated changes that are characteristic of a biological function. GSEA identified 15 upregulated pathways, including cytokine signaling (P < 0.005), starch and sucrose metabolism (P < 0.017), inflammatory response (P < 0.024), and cytokine-cytokine receptor interaction (P < 0.037). A further 8 pathways were downregulated, including oxidative phosphorylation (P < 0.004), mitochondrial matrix (P < 0.006), and electron transport/uncoupling (P < 0.022). Phosphorylation of the insulin signaling protein kinase B was reduced [2.86 ± 0.63 (CD) vs 1.02 ± 0.27 (HFD); P = 0.027] and mitochondrial complexes I, II, and V protein were downregulated by 50-68% (P < 0.005). On a normal diet, the male offspring of HFD-fed dams did not become obese adults but developed insulin resistance, with transcriptional evidence of muscle cytokine activation, inflammation, and mitochondrial dysfunction. These data indicate that maternal overnutrition, even in the absence of prepregnancy obesity, can promote metabolic dysregulation and predispose offspring to type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypothalamus is a key central controller of energy homeostasis and is the source and/or site of action of many neuropeptides involved in this process. The aim of this study was to isolate hypothalamic genes differentially expressed between lean and obese Psammomys obesus, a polygenic animal model of obesity and type 2 diabetes. Differential display PCR was used to compare hypothalamic gene expression profiles of lean and healthy, obese and hyperinsulinemic, and obese, diabetic P. obesus in both the fed and fasted states. We conducted differential display with 180 separate primer combinations to amplify approximately 9000 expressed transcripts. Sixty differentially expressed bands were excised. Taqman PCR was performed on 36 of these transcripts to confirm differential gene expression in a larger sample population. Of these 36 transcripts, 9 showed homology to known genes, and 27 were considered to be novel sequences. Gene expression profiles for two of these genes are presented here. In conclusion, differential display PCR was successfully used to isolate several transcripts that may be involved in the central regulation of energy balance. We are currently conducting numerous studies to further investigate the role of these genes in the development of obesity in P. obesus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims/hypothesis This study aimed to identify genes that are expressed in skeletal muscle, encode proteins with functional significance in mitochondria, and are associated with type 2 diabetes.
Methods We screened for differentially expressed genes in skeletal muscle of Psammomys obesus (Israeli sand rats), and prioritised these on the basis of genomic localisation and bioinformatics analysis for proteins with likely mitochondrial functions.
Results We identified a mitochondrial intramembrane protease, known as presenilins-associated rhomboid-like protein (PSARL) that is associated with insulin resistance and type 2 diabetes. Expression of PSARL was reduced in skeletal muscle of diabetic Psammomys obesus, and restored after exercise training to successfully treat the diabetes. PSARL gene expression in human skeletal muscle was correlated with insulin sensitivity as assessed by glucose disposal during a hyperinsulinaemic–euglycaemic clamp. In 1,031 human subjects, an amino acid substitution (Leu262Val) in PSARL was associated with increased plasma insulin concentration, a key risk factor for diabetes. Furthermore, this variant interacted strongly with age to affect insulin levels, accounting for 5% of the variation in plasma insulin in elderly subjects.
Conclusions/interpretation Variation in PSARL sequence and/or expression may be an important new risk factor for type 2 diabetes and other components of the metabolic syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 (PGC-1) can induce mitochondria biogenesis and has been implicated in the development of oxidative type I muscle fibers. The PPAR isoforms α, β/δ, and γ control the transcription of genes involved in fatty acid and glucose metabolism. As endurance training increases skeletal muscle mitochondria and type I fiber content and fatty acid oxidative capacity, our aim was to determine whether these increases could be mediated by possible effects on PGC-1 or PPAR-α, -β/δ, and -γ. Seven healthy men performed 6 weeks of endurance training and the expression levels of PGC-1 and PPAR-α, -β/δ, and -γ mRNA as well as the fiber type distribution of the PGC-1 and PPAR-α proteins were measured in biopsies from their vastus lateralis muscle. PGC-1 and PPAR-α mRNA expression increased by 2.7- and 2.2-fold (P < 0.01), respectively, after endurance training. PGC-1 expression was 2.2- and 6-fold greater in the type IIa than in the type I and IIx fibers, respectively. It increased by 2.8-fold in the type IIa fibers and by 1.5-fold in both the type I and IIx fibers after endurance training (P < 0.015). PPAR-α was 1.9-fold greater in type I than in the II fibers and increased by 3.0-fold and 1.5-fold in these respective fibers after endurance training (P < 0.001). The increases in PGC-1 and PPAR-α levels reported in this study may play an important role in the changes in muscle mitochondria content, oxidative phenotype, and sensitivity to insulin known to be induced by endurance training.